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ABSTRACT
Background music not only provides auditory experience for users,
but also conveys, guides, and promotes emotions that resonate with
visual contents. Studies on how to synthesize background music
for different scenes can promote research in many fields, such as
human behaviour research. Although considerable effort has been
directed toward music synthesis, the synthesis of appropriate music
based on scene visual content remains an open problem.

In this paper we introduce an interactive background music syn-
thesis algorithm guided by visual content. We leverage a cascading
strategy to synthesize background music in two stages: Scene Vi-
sual Analysis and Background Music Synthesis. First, seeking a deep
learning-based solution, we leverage neural networks to analyze
the sentiment of the input scene. Second, real-time background
music is synthesized by optimizing a cost function that guides the
selection and transition of music clips to maximize the emotion
consistency between visual and auditory criteria, and music conti-
nuity. In our experiments, we demonstrate the proposed approach
can synthesize dynamic background music for different types of
scenarios. We also conducted quantitative and qualitative analysis
on the synthesized results of multiple example scenes to validate
the efficacy of our approach.

CCS CONCEPTS
•Applied computing→ Sound andmusic computing; •Human-
centered computing→ Virtual reality.
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Figure 1: Seamless background music synthesis in accor-
dance with the scene emotion expression during navigation
in different virtual environments.

1 INTRODUCTION
Creating an immersive virtual environment that combines both
visual and hearing rendering to enhance the multimedia experience
is important for games, virtual/augmented reality (VR/AR), and
multimedia applications [42]. Throughout the past few decades,
significant research effort has focused on improving the visual fi-
delity using multimedia techniques [48] or high-quality graphics
rendering. Compared to visual rendering, the state-of-the-art in
audio synthesis based on visual content lags behind. Research in
computer vision and graphics enables the generation of appropri-
ate sound according to the events in video progression. However,
the synthesis of music based on visual content remains an open
problem. Devising algorithms and tools to automatically synthesize
real-time desirable music in virtual environments will find use-
ful applications. As shown in Fig. 1, different virtual scenes may
be associated with different emotions. Desirably, matching back-
ground music should be assigned; and background music should
also transition seamlessly between virtual scenes.

The notion of synthesizing background music (BGM) for dif-
ferent environments is widely studied in the context of cognitive
psychology. Music has been proven to be a sensory stimulus that
can affect human mood and behavior [26] and BGM is a very im-
portant element to provide diverse multimedia experience to cus-
tomers [34]. For example, a shopping mall might play positive and
uplifting background music to motivate customers to shop, closing
more sales [51]. Current practices commonly resort to composing
unique music by hiring professional musicians, or retrieving music
that matches the scene followed by cropping, stitching, etc. During
the music composition process, the musicians need to pay close
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attention to the scene sentiment. As the complexity of the scene in-
creases, producers need to consider the natural transitions between
multiple emotions during the music composition process. Conse-
quently, BGM synthesis is time-consuming and costly to produce.
Moreover, it does not cater to the different time lengths of each
user’s music playback and ensure the seamless transition between
different music.

We propose a computational approach to facilitate and automate
the synthesis of BGM for different places. As illustrated in Fig. 2,
given the panorama images of a virtual environment, the core idea
of our approach is to provide a desirable BGM for users when
navigating different regions to engage them with the audiovisual-
based activities in the environment. To overcome the challenge
of the non-trivial mapping from the input visual domain to the
output audio domain, we devise a cascade visual-aware background
music synthesis approach comprising a Visual Analysis stage and a
Background Music Synthesis stage. In the first stage, our approach
extracts emotional features from the detected salient objects and
the color tone of the scene. In the second stage, guided by the
visual analysis results, our approach performs the real-time music
composition optimization, considering music transition factors (i.e.
chords sequence, pitch, tempo, and key signature).

With the increasing ubiquity of smartglasses for AR interactions,
our approach can also be extended to synthesize a matching BGM
for real-world scenarios, such as during a museum exhibition tour.
In order to satisfy the music preference of different customers, our
approach could also take into account the user’s preferred playlist
during the music synthesis.

Our main contributions in this paper are as follows:
• proposing a computational approach to synthesize back-
ground music driven by visual analysis of a scene;
• formulating the music transition problem as an optimiza-
tion problem considering scene sentiment, tempo, and other
music-related properties as constraints;
• demonstrating the proposed approach for different applica-
tions and validating its performance through quantitative
and qualitative experiments.

2 RELATEDWORK
2.1 Background Music Industry
The music industry, as part of the broader “experience design”, im-
pacts our everyday life. Music is tightly integrated with different
virtual-immersive environment technologies for different purposes,
e.g., education [15], gaming [37]. The main goal of background mu-
sic is to create distinct and cohesive musical identities. Its creation
is usually contracted to music companies, such as Music Concierge
and Mood Media.

Synthesizing BGM for different virutal scenes needs a lot of
human effort and requires professional skills [16]. Imagine cre-
ating BGM for a hotel. The music producers have to investigate
the themes and functionalities of different areas (e.g., lobby, bar,
restaurant, gym) of the hotel, so as to create matching background
music for different areas [30]. The full playlist of music choices of
music library can sum up between 1, 000 to 8, 000 [1]. The number
mostly depends on how many different sections the client wants
to divide their playlist into, and the number of different areas at

the location. Consequently, the producer may spend lots of time
on music composition and editing, incurring considerable costs.

Our work aims to overcome the challenge of synthesizing BGM
for scenes. Inspired by the effort of designing AI musical assistants,
such as AI drummer [31] and music generator for fearful virtual
environment GhostWriter [38], we explore the possibility of devel-
oping a computational approach to synthesize matching, dynamic,
and personalized BGM guided by the visual scene.

2.2 Visual Sentiment and Music
Psychological studies have shown that human emotions can be
affected by visual information [25, 26] as well as music signals [4].
Psychologists found that visual and auditory signals can influence
us in two main ways: i) we often subconsciously match our body
motion with what we see and hear; ii) audio signals (e.g., music)
can trigger us to associate the environment we are in with a certain
context and emotion [6].

Visual perception is influenced by image sentiment. Psycholo-
gists have found that human attention generally prioritizes emo-
tional contents [45] and low-level features such as color [44]. This
process enables us to analyze a scene through regions attended
selectively and its color tone. In computer vision, graphics, and
image processing, many machine learning and deep learning meth-
ods have been proposed for human attention detection and salient
object detection [14], image sentiment recognition [43, 54], and
color palette extraction [41].

Music theories and practices indicate thatmusic conveys sentiment-
related messages, where tempo, pitches, and rhythms are linked to
expressing emotions [32] and can influence human’s cognition and
behaviors [11]. A biosensing prototype [29] has been proposed to
transform emotion into music, facilitating social interaction and
human-computer interaction in VR games.

Inspired by these studies, we incorporate deep learning tech-
niques to automatically infer the visual sentiment by performing
visual analysis on images, which guides the background music syn-
thesis. Our approach allows both general and professional users to
synthesize their desired background music.

2.3 Background Music Processing
Visual to Sound. There are studies about the association between

vision and sound. Researchers in multimedia, computer vision, and
graphics have worked on enhancing the audio-visual diversity of
their surrounding environments. For example, techniques have been
proposed to generate natural sound for the wild [56], scenes [35],
360◦ panorama images [22], and music videos [27]. In order to
enable “drawing scenes by ear”, researchers working on image
sonification have proposed approaches to represent visual data
by means of sound, which could be applied for blind assistant
systems. For example, color information could be represented by
audio attributes, e.g., instrument [2], pitch and loudness [10].

However, little research has evaluated the relationships between
scene visual sentiment and background music. In this paper, we
present a novel approach to synthesize BGM for different scenes,
which facilitates the development of human-computer interaction
interfaces and virtual world applications promoting seamless inter-
action.
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Figure 2: Overview of our proposed approach for scene-aware backgroundmusic synthesis. It consists of twomajor steps: Scene
Visual Analysis and Background Music Synthesis.

Music Synthesis and Transition. Music greatly contributes to the
immersive multimedia experience of a virtual world. An appropri-
ate choice of BGM can add emotional depth to the experience and
help communicate with the listeners [32]. The idea of synthesizing
music by concatenating existing music fragments based on eupho-
nious transitions has a long history [33]. A considerable amount of
research has been done to automate music retrieval [27, 52], music
exploration [3], music playlist creation [5], and music search evalu-
ation [20], which allows effective music recommendations based
on specific conditions such as emotional states.

To concatenate the retrieved music natural and seamless, several
factors considered during music transition have gained popular-
ity in such fields, such as harmonic similarity [33], chunk simi-
larity [40], pitch [24], tempo and volume [39], and the circle of
fifth for the key signature [18]. We draw inspirations from existing
music retrieval and transition algorithms and synthesize plausible
background music based on visual emotional observations.

3 SCENE VISUAL ANALYSIS
As demonstrated in [55], human are able to perceive and understand
scenes in terms of high-level semantics (i.e. emotion expression).
The semantic information carried by scene images is conveyed by
salient objects [14] and color tone [44]. Inspired by these studies, our
algorithm is designed to extract two kinds of emotional features in
Scene Visual Analysis, i.e. salient object emotional features and color
tone features. Such features are used to guide the BGM synthesis
to match the semantic information of the virtual scene.

3.1 Object Detection
Our Scene Visual Analysis is devised upon robust object detection
considering that people have a remarkable ability to attend selec-
tively to some salient objects in an area. For example, people attend
to emotional stimuli (i.e. an object that elicits an emotional response
for the observer), such as special exhibits in a museum or window
displays in a clothing store. Researchers have been incorporating
higher-level perceptual properties of images to predict salience [14],
and their models have encoded high-level concepts such as faces,
interacting objects, and text.

Beginning with a panorama image of the virtual scene and a cam-
era viewing horizontally from the center of the rendered image, we
rotate the viewpoint horizontally 36◦ to capture different segments
of the image. We use the proposed network with short connections
in [21] to detect salient objects, which is based on VGGNet pre-
trained on the MSRA-B dataset [28]. If there are any overlapping
objects from one slice to the next, we count the detected objects as
the same object. Scene Visual Analysis in Fig. 2 depicts the object
detection process of the virtual burger store such as the chair, dome
light, and food.

The hyper-parameters used in this work contain: learning rate
(1e-8), weight decay (0.0005), momentum (0.9), loss weight for each
side output (1). Please refer to [21] for more details.

3.2 Feature Extraction
Scenes typically convey emotions via the constituent objects and
color tone. Analyzing the scene emotional states helps synthesize
vivid BGM, enriching a user’s auditory experience.

Object Emotional Features. To capture high-quality emotion in-
formation, we apply a deep learning-based visual sentiment recog-
nition model, an AlexNet-styled network [9]. We modify the order
of the pooling and normalization layers of the original architeccture.
Their network is pre-trained on the dataset collected and released
in [53], whose images are labeled with either positive or negative
sentiment.

To be consistent with the emotional categories of psychology
research in visual and auditory perception, our approach seeks
to refine the emotion recognition of the scene images. We do so
by replacing the last two-neuron fully-connected layer with a five-
neuron layer, which is fed to a softmax that computes the probability
distribution over the target classes representing 5 emotion types
(i.e. calm, happy, sad, angry, and fearful). We also fine-tuned the
pre-trained model on the dataset proposed in [54]. The network
was trained using stochastic gradient descent with a momentum of
0.9 and a starting learning rate of 0.001.

For each detected object, we use the extracted feature from the
second to the last fully-connected layers as the visual emotion
representation, which is represented as a 4, 096-d vector.



Color Tone Features. A good palette extracted from the image is
one that closely captures the underlying colors the image was com-
posed of, even if those colors do not appear in their purest form on
the image itself, i.e. blended or covered by other colors for example.
To extract the color palette of the virtual scene panorama image,
our approach computes and simplifies the convex hull enclosing all
the color samples [41], providing more general palettes that better
represent the existing color gamut of the image.

The palette size is set as 5. Each color in the palette is repre-
sented by its RGB value and its corresponding proportion in the
five extracted colors. Fig. 2 illustrates the detected color tone of the
virtual burger store. The color tone feature, concatenated with the
object emotional features, will be used in our background music
synthesis (Sec. 4).

4 BACKGROUND MUSIC SYNTHESIS
Based on the emotion representations extracted from the scene im-
age, our approach synthesizes emotional and seamless background
music so as to yield attractive multimedia experience for users.
Abrupt music transition has been shown to interrupt one’s im-
mersive audiovisual experience [7]. To address the smooth music
transition challenge, we formulate the music generation process
as an optimization with various constraints, including emotional
states, music chord progression, tempo, and etc. We will discuss
how we define these constraints or cost terms in detail.

4.1 Optimization Formulation
We synthesize scene-aware backgroundmusic by optimizing against
the approximated total cost function (Equation 1). We specify our
optimization process on bars, which are segments of time in music
corresponding to a specific number of beats. LetM (n) = (b1,b2, ...,bn )
denote the currently playing music track, which consists of n bars
{bn }

N
n=1 assembled in a sequential order. As the user moves to a

different area, the upcoming music should match the currently
playing music at the current bar position. When a user moves to
a new scene I∗, we choose the optimal upcomingM∗ andm∗that
minimize the emotion and transition costs:

Ctotal (M,m, I
∗,M∗) = CE (I

∗,M∗) + λCT (M,m,M
∗,m∗) (1)

wherem ∈ [1,n] and M = (b1,b2, ...,bm ) represents the current
music that has playedm bars. In the following sections, we intro-
duce two cost terms. CE (·) is the emotion cost term for evaluating
the emotion consistency between the new scene I∗ and the upcom-
ing music (M∗). CT (·) is the transition cost term, which measures
the transition difficulty from the current music to the upcoming
music, constraining the pitch, tempo, and chords progression dur-
ing the optimization, at a specific location fromm in M tom∗ in
M∗. λ is a regularization factor to balance these two terms.

4.2 Dataset
We created two datasets from the Internet to achieve the goal of
background music synthesis:
• Reference BGM Dataset: contains 300 combinations of scenes
and the corresponding backgroundmusic. The dataset covers
a variety of scenes expressing different emotion types (e.g.,
calm, happy, sad, angry, and fearful). To extract emotional

Detected Salient Object Reference Objects & BGM Retrieved

Figure 3: Retrieval of reference music clips that carry simi-
lar emotion as that of the query. The similarity is computed
based on visual emotional features.

representation from each scene in this dataset, we use the
same method as in Sec. 3.
• BGM Dataset: includes 1, 000 copyright-free music midi files,
which are used to synthesize the final output background
music. The dataset covers the same emotion types as those
of the Reference BGM Dataset.

4.3 Emotion Cost
Directly evaluating the emotion consistency between images and
the background music is difficult even with the state-of-the-art deep
learning techniques. This is due to the significant gap between the
visual domain and the audio space and the difficulty of collecting
sufficient high-quality multi-modal data [36]. To tackle this chal-
lenge, we devise our approach with a Reference BGM Dataset, which
provides an intermediate, emotion-rich audio representation that
makes matching visual contents and music features feasible.

Reference Music Retrieval. For a scene I , our approach retrieves
top N pieces of reference music {ri }Ni=1 from the Reference BGM
Dataset. The similarity between I and a reference BGM ri is com-
puted using the mean squared distance (l2) over their 4, 096-d visual
emotion features of the detected salient objects and the color tone
features of the scene panorama image (Sec. 3). Specifically, we av-
erage the sum of l2 between every two salient objects of I and the
reference image, as well as the detected color palette of I and the
reference image (corresponding to ri ); the shorter the distance is,
the higher the similarity is.

For each reference music ri , we compute its importance hi ∈
[0, 1] using its similarity to I within the visual emotion space (i.e.
salient object emotion and color tone), normalized over the simi-
larities of all the retrieved reference music {ri }Ni=1. Fig. 3 presents
some examples of the retrieved reference BGM, which carry similar
emotion as that of the query. In our implementation, we use N = 3.

Music Emotion Recognition. Before describing the details of the
emotion cost term in Equation (1), we use a music emotion recogni-
tion model [23] based on which the cost term is defined. We trained
the model on the CAL500exp dataset [46], which contains 3223
items annotated with a dependent emotion tag (i.e. calm, happy,
sad, angry, and fearful).

Based on the emotion recognition model, each type of emotion
style embedding of the reference music set {ri }Ni=1 is computed as a
weighted sum:∑N

i=1hi ·plj (ri ), where
∑N
i=1hi =1, and plj (·) ∈ [0, 1]

is the classification score of the emotion label lj . Specifically, lj is the
index of 5 different labels, i.e. lj ∈ {calm, happy, angry, sad, fearful}.



CE (·) drives the upcoming background musicM∗, retrieved from
the collected BGM Dataset, to be consistent with the inferred emo-
tion states of the reference music set {ri }Ni=1, thus matching the
conveyed emotion of I . It is defined as:

CE (·) =
5∑
j=1

N∑
i=1
|hiplj (ri ) − plj (M

∗) |. (2)

4.4 Transition Cost
A transition from music M to another music M∗ sounds natural
when the pitch and tempo at the bar bm∗ ofM∗ are similar to those
of the previously played bar bm of M ; and if the key change and
the chord progression fromM∗ is harmonious toM . We compute
the transition cost CT (·) by combining these four cost terms:

CT (·) = wtDt (bm ,bm∗ ) → tempo distance
+wpDp (bm ,bm∗ ) → pitch distance
+wkDk (bm ,bm∗ ) → key distance
+wcDc (M,M

∗) → chord progression.

(3)

4.4.1 Tempo, Pitch, and Key Distance Cost. We compute the av-
erage BPM (beats per minute), a measure of tempo, of each bar
and then take the absolute BPM difference between pairs (bm ,bm∗ )
to get Dt (·). We estimate pitch differences by computing chroma
features [13] for each beat in a bar, and then compute the average
cosine distances Dp (bm ,bm∗ ) between bar pairs. For the key signa-
ture distance betweenM andM∗, we follow the method proposed
by Clough et al. [12], which can be easily calculated by the musical
theory tool of “Circle of Fifths”.

4.4.2 Chord Progression Cost. In order to keep the music play-
back harmonious between different clips, the chord sequence of
M∗ should harmoniously progress with the bars of M that have
been played. We apply a text-based Long Short-Term Memory
(LSTM) [19] network based on which the cost term is defined.

Network Architecture. LSTM network is a redesign of Recurrent
Neural Network (RNN) to help explore and store information for
longer periods of time, which is applied to infer the chord pro-
gression based on the played bars ofM∗. Fig. 4 depicts the model
architecture. We use four different types of layers, i.e. LSTM layers,
dropout layers, dense layers, and the activation layers.

We use a three-layer LSTM structure, each of which consists of
256 hidden units. The output of each LSTM unit is used as an input
to all of the LSTM units in the next layer and so on. Dropout of 0.3
is added after every LSTM layers. In the last layer we use “Softmax”
activations. The weights of the network are updated iteratively.

Training Data. To train our model, we collected a music chord
progression dataset, which consists of 1k chord sequences from the
McGill Billboard Chord Dataset [8] and the Internet. The dataset
covers different music genres, such as classic, pop, jazz, and blues.
We further convert all chord sequences under different key signa-
tures to key C major to maintain the consistency of the training
data. The training chord sequences are divided into fragments, each
of which containing 10 chords.

Inferring. With the trained model, we infer the upcoming chord
progression based on the played bars of M . Specifically, for each
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Figure 4: The LSTM structure of the training process.

inferred chord in the progression, we chose the one with the highest
probability as the inferred result. We design to infer the longest
chord progression without repeating sequences.

Based on our LSTMmodel, we elaborate the costDc (·) defined as
the similarity between inferred chord progression andM∗, i.e. the
ratio’s reciprocal of the same chord sequence length. If the length
is 0, we set Dc (·) as 1. The chords are estimated by [50].

The weightswt ,wp ,wk , andwc allow us to control the accept-
able range of pitch, tempo, and key distances, and the harmony of
chord progression in music transitions. These transition cost terms
ensure that the seamless music transition progression has minimal
transition cost (i.e. CT (·) → 0).

4.5 Background Music Optimization
Since our optimization problem is combinatorial and the number of
combination items can vary (e.g., retrieved music can be played in
any bars), it is difficult to define a closed-form solution. To deal with
this complication, we adopt the Reversible Jump MCMC (RJMCMC)
framework to explore the space of possible music tracks extensively.

To efficiently explore the solution space, we apply the simu-
lated annealing process in the optimization process. We define a
Boltzmann-like objective function:

f (M∗) = exp(−1
t
Ctotal (M, I ,M

∗)), (4)

where t is the temperature of the simulated annealing process,
which decreases gradually throughout the optimization. There are
two types of moves that can be selected by the optimizer:

(1) Swap Music: randomly change to another music from BGM
Dataset;

(2) Retrieve Bars: randomly change to another bar within the
music.

The selection probabilities of the moves to swap music and re-
trieve bars are pm and pb. By default, we set the selection probabili-
ties as pm = pb = 0.5.

To decide whether to accept the proposed music M∗, our ap-
proach compares the total cost value Ctotal (M, I ,M

∗) of the pro-
posedM∗ with the total cost value ofCtotal (M, I ,M0) of the original
state with a randomly selected bar of a randomly selected music
M0. To maintain the detailed balance condition of the RJMCMC
method, the acceptance probabilities Pr (M∗ |M0) are equivalent for
the two move types: Pr (M∗ |M0) = min(1, f (M∗)/f (M0)).

At the beginning of the optimization, the temperature t is set
to be high (1.0) to prompt the optimizer to aggressively explore
possible solutions. The value of t decreases by 0.2 every 100 iter-
ations until it reaches zero. We terminate the optimization if the
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Figure 5: Example virtual scenes used in both quantitative and qualitative experiments. Here we display images captured
from the main view. Please refer to our supplementary material for the corresponding panorama images and the synthesized
background music for different navigations.

absolute change in the total cost value is less than 5% over the past
30 iterations.

4.6 Playback Configuration
When the upcoming musicM∗ is determined through the optimiza-
tion process, after the current bar of M is played, our approach
automatically plays the first two to four bars of M∗ with the fol-
lowing configurations: gradually speed up or slow down the tempo,
increase or decrease the volume. In practice, we find that this leads
to a more comfortable auditory experience during music transition.

5 EXPERIMENTS
In this section, we discuss several quantitative and qualitative exper-
iments conducted to evaluate the effectiveness of our scene-aware
background music synthesis approach. Our approach was imple-
mented on an Intel Core i7-5930K machine running in an NVIDIA
TITAN GPU with 12GB graphics card memory.

5.1 Methods for Comparison
Different Approaches. We compared three approaches of back-

ground music synthesis:
• Randomly synthesized background music;
• Our synthesized scene-aware background music;
• Professionally composed background music. We recruited
three professionals who have been studying music theory
and music composition for 5 years.

We compared results of these approaches in quantitative and quali-
tative experiments.

Validation Dataset. We created a virtual city to conduct experi-
ments (shown in Fig. 5), which consists of 9 different scenes, namely,
City Center, School, Burger Store, Supermarket, Infirmary,Abandoned
Street, Boxing Stadium, Gun Shop, and Haunted House. The scenes
are associated with different emotion states. We navigated in the
virtual world and generated 15 navigations of different scenes. Each
navigation contains four randomly selected scenes with random
navigation time (at least 20 seconds at each scene). The background
music for each navigation is synthesized by different approaches
aforementioned, i.e. each navigation has 3 background music gen-
erated by the 3 different approaches. Please refer to supplementary
materials for the validation dataset.

Quantitative Experiment. All three approaches used our collected
BGM Dataset. We measured the performance of the results in emo-
tion expression and music transition. Specifically,

• for navigation in each scene, we used scene and music emo-
tion recognition models to recognize the emotional state
(through salient objects and color tones) of the scene and
the corresponding music. The recognition results are rep-
resented by a 5D one-hot vector, each element of which
presents an emotion state (i.e. calm, happy, sad, angry, and
fearful). We computed the Euclidean distance as the emotion
expression error;
• for each transition error of all navigations, we averaged the
tempo, pitch, and key distances. We recruited 10 professional
musicians and asked them to score the harmony of the chord
progression synthesized by different approaches;
• for each navigation, we recorded the synthesis time of the
BGM synthesis process of three different approaches.

Qualitative Experiment. We recruited 20 participants with re-
ported normal or corrected-to-normal vision, no color-blindness,
and normal hearing. Half of the participants are professional musi-
cians. Before each study, the participants were given a task descrip-
tion and encouraged to ask any question. The participants sat 35cm
in front of a screen (with 1440×900 resolution). Auditory input was
provided by a pair of Logitech G430 headphones with 7.1 channel
surround sound output.

The goal of this experiment is to evaluate how well the music we
synthesized matches the corresponding navigation. We asked the
participants to rate the emotion expression, transition seamlessness,
and overall experience of navigation with different background mu-
sic, using a 1-5 Likert scale, with 1 meaning rough music transition
and bad visual correspondence performance and 5 meaning the
opposite. The music pieces were randomly selected from the results
of different approaches so as to avoid bias.

5.2 Results and Analysis
Quantitative Experiment. We conducted quantitative experiment

with each approach discussed in Sec. 5.1, synthesizing background
music to match with different scenes. The results are shown in Fig. 6.
The results show the capability of each approach in synthesizing
background music in accordance with the scene visual information
and in performing seamless transition simultaneously.

For emotion expression, the overall average inconsistency across
all virtual scenes of the results synthesized by our approach attained
the lowest error (M = 0.81, SD = 0.57), closely following the results
composed by professional musicians (Professional Synthesis) (M =
0.85, SD = 0.64). The errors of our approach are higher than those of
Professional Synthesis on pitch distance (the former:M = 0.27, SD =
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Figure 6: Quantitative errors of different approaches, includ-
ing emotion expression and transition. For visualization of
different errors, we normalize the results to [0,1] accord-
ingly.

0.24; the latter: M = 0.17, SD = 0.26), key distance (the former:
M = 0.34, SD = 0.23; the latter: M = 0.25, SD = 0.49), and chord
progression harmony (the former:M = 0.34, SD = 0.23; the latter:
M = 0.25, SD = 0.49). The error bar of tempo depicts different
results. Our results obtained the lower error (M = 0.24, SD = 0.22)
than the results of Professional Synthesis (M = 0.27, SD = 0.40),
indicating that our approach is strict in music tempo control. As
shown in Fig.6, results on chord progression are comparable, i.e.
our approach resulted in an error of M = 0.30, SD = 0.37, and
Professional Synthesis resulted in an error ofM = 0.28, SD = 0.27.
The quantitative results indicate that our LSTM chord prediction
model is suitable for our task.

In addition, we note that creating background music manually
could be challenging as it involves music selection, cropping, and
stitching to match the visual observations on different scenes, as
well as performing seamless transition between different scenes.
Our approach automates these tasks.

To demonstrate that our approach can perform real-time back-
ground music synthesis, we recorded the time for creating the
background music for each navigation using different approaches.
Results can be created much faster using our approach (M =

0.025 mins, SD = 0.007 mins) compared to Professional Synthe-
sis (M = 34.23 mins, SD = 13.09 mins). The experts claimed that
they need to find music that matches the emotional expression of
the scene in the dataset for nearly 20 minutes, and then perform
the editing between music clips. Therefore, our computational ap-
proach makes it possible for non-experts to generate background
music for real-time applications.

Qualitative Experiment. Our qualitative experiment consisted of
three parts: i) emotion expression evaluation (verifying the emo-
tion consistency between virtual scenes and the corresponding
background music); ii) music transition evaluation (verifying the
seamlessness of music transition); iii) overall evaluation (verifying
the experience enhancement of background music during naviga-
tion in the virtual environment). We conducted a semi-structured
interview about the users’ experience to explore other factors in-
fluencing the ratings.
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Emotion Transition Overall
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Figure 7: User ratings of emotion expression, seamless tran-
sition, and overall experience of different approaches, i.e.
Random Synthesis, our approach, and Professional Synthe-
sis.

Fig. 7 shows the ratings of the qualitative experiments. We dis-
play the ratings by the normal users and experts, respectively. Over-
all, the average emotion expression, music transition, and overall
ratings are 2.96, 2.31, and 2.81 for the Random Synthesis results,
3.92, 4.00, and 3.97 for our results, and 3.98, 4.05, and 4.17 for the
Professional Results. For the three kinds of ratings on the music syn-
thesized by different approaches, the ratings of professionals are
mostly lower than that of normal users. This can be explained by
the fact that experts are more rigorous on music performance evalu-
ation, especially on music transition. The detailed ratings tabulated
by user types can be found in the supplementary material.

To confirm that our results are efficacious, we performed One-
Way ANOVA test in qualitative experiments. In all cases, our syn-
theses are more preferable than random syntheses and are com-
parable to professional syntheses. The p-values are less than 0.05
between the results of Random Synthesis and our approach: emotion
(F[1,599] = 9.125,p < .5); transition (F[1,449] = 13.504,p < .05);
overall (F[1,149] = 8.370,p < .05). On the contrary, there are
no significant differences between our results and Professional
Synthesis results: emotion (F[1,599] = 0.418,p = .68); transition
(F[1,449] = 0.126,p = .90); overall (F[1,149] = 1.910,p = .06).

To verify the factors considered in our optimization contributed
to the overall experience, we computed Bivariate (Pearson) correla-
tion coefficients between the ratings of the overall experience and
other factors respectively. There are positive correlations between
the overall experience and emotion expression (r = .65,p < .05);
and between the overall experience and transition seamlessness
(r = .58,p < .05). The higher the music performance with respect
to emotion and transition is, the higher the overall experience.

Besides the two considered factors, some users commented that
the music delay during the scene transition could affect the overall
experience. This is a limitation posed by the seamless transition.
The music delay happens not only in our results (caused by opti-
mization process), but also occasionally in the professional result
(caused by the complete playback of phrases). Moreover, some users
commented that the absence of characters and events in scenes will
affect the emotion judgement. This can be explained by the fact
that human beings may have strong a priori judgement about the
emotion associated with some scene types. For example, a boxing
arena is often associated with the emotion of excitement. Such



(a) Church

(b) Forbidden City

Figure 8: Music synthesis for real-world scenarios. With the
(a) panorama images captured in churches or (2) 3D tours in
the onlinemuseumof ForbiddenCity (©The PalaceMuseum
1), our approach synthesized background music to play dur-
ing the navigations.

feedbacks give us some interesting insights about considering prior
knowledge of scene activities in synthesizing background music.

6 APPLICATIONS
We demonstrate the efficacy of our approach and present several
useful applications. As our results consist of synthesized back-
ground music, we encourage readers to watch the accompanying
video to view and hear the full results. The background music could
be synthesized in real-time when the user navigates a virtual envi-
ronment, and it could also seamlessly transition according to the
scene that the user navigates to.

6.1 Game Music Design
Game designers are aware that music is not merely a detached back-
drop to the action on screen - it can ebb and flow, adding emotional
depth and breadth to scenes. It also helps maintain the player atten-
tion and considerably changes how the players play the game [49].
For example, music can be used to depict characters, to signal a
change in the game state, to communicate an event to the player, or
to build up the dramatic tension of a scene. Our approach supports
game music design, such as shooting game PUBG (PlayerUnknown’s
Battlegrounds). The real-time BGM can be automatically synthe-
sized according to the virtual scene where the user is located. Please
refer to supplementary materials for the synthesized results. Game
designers can also specify the emotion type according to game
storytelling, e.g., synthesizing background music for a role-playing
game based on the game character’s location in a virtual world.

6.2 Real World Music Design
Our approach can automatically synthesize background music for
3D virtual tours. For example, as shown in Fig. 8 (a), given the
panorama images taken in churches as input, our approach syn-
thesizes matching background music that the user can listen to

1https://en.dpm.org.cn/

while viewing the panorama images on a screen or in virtual reality.
Our approach can be similarly applied for synthesizing background
music for other virtual tours such as for real estate showcases.

6.3 Preferences-based Music Design
To match the synthesized music with the music preferences of
different users, our approach could constrain the solution space
of the music optimization on two conditions analyzed from the
user’s preferred music playlist: (a) we can use the method proposed
by [17] to detect the music genre preference of users and constrain
the solution space with the corresponding music genres; (b) we
can constrain the tempo range using the beats per minute of each
music in a playlist. As shown in Fig. 8 (b), our approach can be
applied to synthesize background music during the navigation in
the palace museum of Forbidden City1. With the user input playlist,
the detected music genre (i.e. Chinese-style music) and tempo (i.e.
between 60 bpm to 100 bpm) were used during the background
music synthesis. Please refer to the supplementary material for the
results.

7 CONCLUSION
We propose a computational approach to automatically synthesize
real-time backgroundmusic considering the virtual scene that a user
is navigating. Guided by a visual sentiment analysis, our approach
synthesizes music that matches the emotion states conveyed by
the scene, as well as allowing seamless transition. Our approach
can enable interesting applications such as music design for game
and real world scenarios, and can also incorporate a user’s music
preference.

Limitations and Future Work. Scenes may be associated with
different intended uses and styles featuring different lights, back-
grounds, layouts, etc. Due to the difficulty of learning effective
and general emotion representations of such factors by computer
vision techniques, we only tested our approach on salient objects.
Based on our approach, the user might circumvent such issues by
explicitly specifying emotions deemed appropriate for the scenes
when synthesizing background music.

To perform visual analysis, we use static panorama images as
input for recognizing the corresponding emotion expression. The
advancement of real-time visual information input, such as video
recording based on the user’s head pose or gaze [47], will reduce
the impact of the information that users are not interested in and
targeted analyze the visual information, thus enhancing the back-
ground music performance.

Our current approach considers emotion and transition param-
eters for synthesizing background music for scenes. It would be
interesting to consider additional factors such as the continuation
of emotional state during the transition between different scenes,
as well as storytelling during the navigation. Future work may
also consider additional musical instruments to yield more diverse
background music.
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